Abstract
We are concerned with the problem of the stability of the syzygy bundles associated to base-point-free vector spaces of forms of the same degree d on the projective space of dimension n. We deduce directly, from M. Green's vanishing theorem for Koszul cohomology, that any such bundle is stable if its rank is sufficiently high. With a similar argument, we prove the semistability of a certain syzygy bundle on a general complete intersection of hypersurfaces of degree d in the projective space. This answers a question of H. Flenner [Comment. Math. Helv.59 (1984) 635–650]. We then give an elementary proof of H. Brenner's criterion of stability for monomial syzygy bundles, avoiding the use of Klyachko's results on toric vector bundles. We finally prove the existence of stable syzygy bundles defined by monomials of the same degree d, of any possible rank, for n at least 3. This extends the similar result proved, for n = 2, by L. Costa, P. Macias Marques and R. M. Miro-Roig [J. Pure Appl. Algebra214 (2010) 1241–1262]. The extension to the case n at least 3 has been also, independently, obtained by P. Macias Marques in his thesis [arXiv:0909.4646/math.AG (2009)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.