Abstract

Focusing on a string-hole gas within the pre-big bang scenario, we study the stability of its solutions in the phase space. We firstly extend the analysis present in the literature relaxing the ideal-gas properties of the string-hole gas, taking into account a (bulk-) viscosity term. Then we consider the case of a theory described by a complete O(d,d)-invariant action up to all orders in α'-corrections (the Hohm-Zwiebach action), studying the stability of the string-hole gas solution with or without the introduction of the viscosity term. Furthermore, the bulk viscosity is also considered for two different first order α'-corrected actions: the Gasperini-Maggiore-Veneziano-action and the Meissner-action. The results obtained show how the viscosity can help to stabilize the string-hole gas solution, obtaining constraints on the equation of state of the gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.