Abstract
We prove the stability of solitons of the Maxwell–Lorentz equations with extended charged rotating particle. The solitons are solutions which correspond to the uniform rotation of the particle. To prove the stability, we construct the Hamilton–Poisson representation of the Maxwell–Lorentz system. The construction relies on the Hamilton least action principle. The constructed structure is degenerate and admits a functional family of the Casimir invariants. This structure allows us to construct the Lyapunov function corresponding to a soliton. The function is a combination of the Hamiltonian with a suitable Casimir invariant. The function is conserved, and the soliton is its critical point. The key point of the proof is a lower bound for the Lyapunov function. This bound implies that the soliton is a strict local minimizer of the function. The bound holds if the effective moment of inertia of the particle in the Maxwell field is sufficiently large with respect to the “bar moment of inertia".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.