Abstract

A one-dimensional, non-premixed flame stability analysis is undertaken.Oscillatory and cellular flame instabilities are identified by a careful studyof the numerically calculated eigenvalues of the linearized system of equations. The numerical investigation details the critical locations for changes in flame behaviour, as well as the critical values of variousparameters that affect flame stability. A critical Lewis number, greaterthan unity, is identified as the value where unstable oscillations maybegin to appear (Le > Le c) and for which cellular flames can exist(Le < Le c). Some prior discussions are clarified regarding theaforementioned critical values, as well as the role of convection inproducing flame instabilities. The methodology of the stability analysis isdiscussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.