Abstract

Nucleoside diphosphate sugars (NDP-sugars) are the substrates for biosynthesis of oligo- and polysaccharides, such as starch and cellulose, and are also required for biosynthesis of nucleotides, ascorbic acid, several cofactors, glycoproteins and many secondary metabolites. A controversial study that questions the generally accepted pathway of ADP-glucose and starch synthesis in plants is based, in part, on claims that NDP-sugars are unstable at alkaline pH in the presence of Mg2+ and that this instability can lead to unreliable results from in vitro assays of enzyme activities. If substantiated, this claim would have far-reaching implications for many published studies that report on the activities of NDP-sugar metabolizing enzymes. To resolve this controversy, we investigated the stability of UDP- and ADP-glucose using biophysical, namely nuclear magnetic resonance (NMR), and highly specific enzymatic methods. Results obtained with both techniques indicate that NDP-sugars are not as unstable as previously suggested. Moreover, their calculated in vitro half-lives are significantly higher than estimates of their in planta turnover times. This indicates that the physico-chemical stability of NDP-sugars has little impact on their concentrations in vivo and that NDP-sugar levels are determined primarily by the relative rates of enzymatic synthesis and consumption. Our results refute one of the main arguments for the controversial pathway of starch synthesis from imported ADP-glucose produced by sucrose synthase in the cytosol.

Highlights

  • Nucleoside diphosphate sugars (NDP-sugars) were discovered by Luis F Leloir and colleagues around the middle of the twentieth century (Leloir, 1951)

  • A controversial study that questions the generally accepted pathway of ADP-glucose and starch synthesis in plants is based, in part, on claims that nucleoside diphosphate (NDP)-sugars are unstable at alkaline pH in the presence of Mg2+ and that this instability can lead to unreliable results from in vitro assays of enzyme activities

  • We investigated the stability of UDP- and ADP-glucose using biophysical, namely nuclear magnetic resonance (NMR), and highly specific enzymatic methods

Read more

Summary

Introduction

Nucleoside diphosphate sugars (NDP-sugars) were discovered by Luis F Leloir and colleagues around the middle of the twentieth century (Leloir, 1951). This seminal discovery and the complementary work on enzyme characterization and elucidation of the many critical roles played by NDPsugars in cells, led to Leloir being awarded the Nobel Prize in Chemistry in 1970 (Leloir, 1971; Leloir, 1983). Later studies showed that ADP-Glc, not UDP-Glc, is the glucosyl donor for glycogen synthesis in bacteria (Greenberg and Preiss, 1964) and starch synthesis in plants (Murata et al, 1963; Recondo et al, 1963; Ghosh and Preiss, 1966)

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.