Abstract

The existence of stable magnetic configurations in white dwarfs, neutron stars and various non-convective stellar {regions} is now well recognized. It has recently been shown numerically that various families of equilibria, including axisymmetric mixed poloidal-toroidal configurations, are stable. Here we test the stability of an analytically-derived non force-free magnetic equilibrium, using three-dimensional magnetohydrodynamic simulations: the mixed configuration is compared with the dynamical evolution of its purely poloidal and purely toroidal components, both known to be unstable. The mixed equilibrium shows no sign of instability under white noise perturbations. {This configuration therefore provides a good description of magnetic equilibrium topology inside non-convective stellar objects and will be useful to initialize magneto-rotational transport in stellar evolution codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.