Abstract
The formation of water clusters on Li(+), Na(+), K(+), Cl(-), and I(-) ions from water vapor at atmospheric conditions have been studied using Monte Carlo simulations. The extended simple point charge model has been employed for water molecules. The polarization of ions in the field of molecules and the polarization of molecules in the field of ions have been considered explicitly in the total Hamiltonian of the molecular system. The cluster formation work and the Gibbs free energy and enthalpy of attachment reactions of one water molecule to the cluster have been calculated via the bicanonical ensemble method. Our results reveal the formation of stable clusters in equilibrium with the moist atmosphere in a wide range of vapor pressure values, with largest clusters are formed around cations. Decreasing the temperature, from 293 K to 253 K, leads to the formation of larger equilibrium clusters, and enhances the stability of systems as whole. According to clusters' molecular structures, negative ions are expected to be more active in atmospheric processes, including chemical reactions and cloud formation, than positive ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.