Abstract

The algebraic stability theorem for persistence modules is a central result in the theory of stability for persistent homology. We introduce a new proof technique which we use to prove a stability theorem for n-dimensional rectangle decomposable persistence modules up to a constant 2n-1 that generalizes the algebraic stability theorem, and give an example showing that the bound cannot be improved for n=2. We then apply the technique to prove stability for block decomposable modules, from which novel results for zigzag modules and Reeb graphs follow. These results are improvements on weaker bounds in previous work, and the bounds we obtain are optimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.