Abstract

The energetics of water clusters with 12 and 20 molecules are studied by quantum-chemical computations using the B3LYP, MP2, MP4 and CCSD methods. The effect of electron-correlation method, basis set, zero-point energy, thermal energy and Gibbs free energy on the relative stability of fused clusters (structures consisting of cubic- or prismatic-shaped subparts) versus cage-shaped clusters (more open structures with only three-coordinated molecules) are investigated. The O–H stretching IR vibrational spectra are studied. The contribution of zero-point and Gibbs free energy will diminish the energy difference between fused- and cage-shaped clusters, but the fused structures are still slightly more favorable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.