Abstract

The linear stability of a convective flow in a vertical fluid layer caused by nonlinear heat sources in the presence of cross-flow through the walls of the channel is investigated in this paper. This study is relevant to the analysis of factors that affect the effectiveness of biomass thermal conversion. The nonlinear problem for the base flow temperature is investigated in detail using the Krasnosel’skiĭ–Guo cone expansion/contraction theorem. It is shown that a different number of solutions can exist depending on the values of the parameters. Estimates for the norm of the solutions are obtained. The linear stability problem is solved numerically by a collocation method based on Chebyshev polynomials. It is shown that the increase in the cross-flow intensity stabilizes the flow, but there is also a small region of the radial Reynolds numbers where the flow is destabilized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.