Abstract

The electronic ground state, stability, and linear and nonlinear optical properties of HXeOXeF and FXeOXeF have been studied theoretically by employing complete active space valence bond (CASVB), multistate complete active space perturbation theory (MS-CASPT2), and coupled cluster methods. It is shown that the oxygen inserted between the two Xe atoms significantly modifies the ground-state electronic configuration of the formed derivative by increasing the closed-shell contribution (σ(2)) and removing the diradicaloid character observed in HXe(2)F. The electronic charge distribution has been analyzed by employing the atoms-in-molecules (AIM) method. The dissociation channels of HXeOXeF and FXeOXeF have been studied in detail. It was found that these compounds are metastable, protected by substantial energy barriers and, thus, they can be prepared under appropriate conditions. Both two- and three-body dissociation reactions have been considered. The effects of inserting O in HXe(2)F and substituting H (HXeOXeF) by F, leading to FXeOXeF, on the energy barriers are discussed. The significant effects of the inserted oxygen on the polarizability and even more on the first hyperpolarizability have been computed and rationalized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.