Abstract
Experimental results are reported for a U-shaped, free convection loop. The top of the loop is open to an isothermal reservoir. The horizontal leg and one vertical leg are heated at rates Q1 and Q2, respectively. The loop is filled either with water or a water-saturated porous medium. Symmetric heating and asymmetric heating favouring the ascending leg of the loop both yield stable flows. Asymmetric heating favouring the descending leg leads to stable flows when the ratio Q1/Q2 is above a critical value. Below this critical value, the flow is observed to oscillate with increasing amplitude until the direction of flow in the loop undergoes a reversal. A steady flow follows the reversal. Analytical results include a stability analysis and time-dependent, one-dimensional numerical calculations, both of which compare favourably with experiment.The disturbance amplification mechanism is explained in terms of thermal anomalies which move through the loop with the material motion of the fluid. Since the heating and buoyancy generation processes are in phase in the heated, descending leg, a thermal anomaly can amplify as it flows through that leg. As the anomaly moves through the ascending leg, it initiates a subsequent anomaly of opposite sign in the descending leg. The result is an oscillating flow which, under appropriate conditions, can amplify.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.