Abstract

This paper focuses on the stability analysis of systems modeled as neutral delay differential equations (NDDEs). These systems include delays in both the state variables and their time derivatives. The proposed approach consists of a descriptor model transformation that constructs an equivalent set of delay differential algebraic equations (DDAEs) of the original NDDEs. We first rigorously prove the equivalency between the original set of NDDEs and the transformed set of DDAEs. Then, the effect on stability analysis is evaluated numerically through a delay-independent stability criterion and the Chebyshev discretization of the characteristic equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.