Abstract
In this paper, the origins of spurious solutions occurring in the high-order finite difference methods are studied. Based on a uniform mesh, spurious modes are found in the high-order one-sided finite difference discretizations of many eigenvalue problems. Spurious modes are classified as spectral pollution and non-spectral pollution. The latter can be partially avoided by mesh refinement, while the former persists when the mesh is refined. Through numerical studies of some prototype eigenvalue problems, such as those of the Helmholtz and beam equations, we show that perfect central differentiation schemes do not produce any spurious modes. Nevertheless, high-order central difference schemes encounter difficulties in implementing complex boundary conditions. We further show that the central difference schemes will produce spurious modes as well, if asymmetric approximation is involved in boundary treatments. In general, central difference schemes are less likely to produce spurious modes than one-sided difference schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.