Abstract

In the paper, we consider the split quaternion matrix equation $$AX=B$$. We design several real representations of split quaternion matrix to transform the above split quaternion matrix equation into some real matrix equations. By using this method, we give some necessary and sufficient conditions for $$AX=B$$ to have a X or $$X=\pm X^{\star }$$ solution and derive the expressions of solutions when equation is solvable, where $$X^{\star } \in \{X^*, X^\eta , X^{\eta *}\}$$, $$X^*$$ is the conjugate transpose of X, for $$\eta \in \{i, j, k\}$$, $$ X^{\eta }, X^{\eta *}$$ are $$\eta $$-conjugate, $$\eta $$-Hermitian of X, respectively. We also present the solvability conditions and expression of the unique solution X or $$X=\pm X^{\star }$$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.