Abstract

We utilize the Millennium-II simulation databases to study the spin bias of dark subhalos in the Local Group-like systems which have two prominent satellites with comparable masses. Selecting the group-size halos with total mass similar to that of the Local Group (LG) from the friends-of-friends halo catalog and locating their subhalos from the substructure catalog, we determine the most massive (main) and second to the most massive (submain) ones among the subhalos hosted by each selected halo. When the dimensionless spin parameter (λ) of each subhalo is derived from its specific angular momentum and circular velocity at virial radius, a signal of correlation is detected between the spin parameters of the subhalos and the main-to-submain mass ratios of their host halos at z = 0: the higher main-to-submain mass ratio a host halo has, the higher mean spin parameter its subhalos have. It is also found that the correlations exist even for the subhalo progenitors at z = 0.5 and 1. Our interpretation of this result is that the subhalo spin bias is not a transient effect but an intrinsic property of a LG-like system with higher main-to-submain mass ratio, caused by stronger anisotropic stress in the region. A cosmological implication of our result is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call