Abstract

In Part I, we found a closed-form expression for the expected complexity of the sphere-decoding algorithm, both for the infinite and finite lattice. We continue the discussion in this paper by generalizing the results to the complex version of the problem and using the expected complexity expressions to determine situations where sphere decoding is practically feasible. In particular, we consider applications of sphere decoding to detection in multiantenna systems. We show that, for a wide range of signal-to-noise ratios (SNRs), rates, and numbers of antennas, the expected complexity is polynomial, in fact, often roughly cubic. Since many communications systems operate at noise levels for which the expected complexity turns out to be polynomial, this suggests that maximum-likelihood decoding, which was hitherto thought to be computationally intractable, can, in fact, be implemented in real-time-a result with many practical implications. To provide complexity information beyond the mean, we derive a closed-form expression for the variance of the complexity of sphere-decoding algorithm in a finite lattice. Furthermore, we consider the expected complexity of sphere decoding for channels with memory, where the lattice-generating matrix has a special Toeplitz structure. Results indicate that the expected complexity in this case is, too, polynomial over a wide range of SNRs, rates, data blocks, and channel impulse response lengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.