Abstract

In this note we investigate in detail the spectrum of the Schrodinger Hamiltonian with a configuration of three equally spaced one-dimensional point interactions (Dirac distributions), with the external ones having the same negative coupling constant. It will be seen that despite its simplicity, such a toy model exhibits a fairly rich variety of spectral combinations when the two coupling constants and the separation distance are manipulated. By analysing the equation determining the square root of the absolute value of the ground state energy and those determining the same quantity for the two possible excited states, we explicitly calculate the eigenvalues for all possible values of the separation distance and the two coupling constants. As a result of our analysis, we provide the conditions in terms of the three parameters in order to have the emergence of such excited states. Furthermore, we use our findings in order to get the confirmation of the fact that the Hamiltonian with such a configuration of three simple point interactions whose coupling constants undergo a special scaling in terms of the vanishing separation distance, converges in the norm resolvent sense to the Hamiltonian with an attractive δ′-interaction centred at the origin, as was shown by Exner and collaborators making the result previously obtained by Cheon et al. mathematically rigorous.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call