Abstract
The main objective of this paper is to extend the pioneering work of Sims on second-order linear differential equations with a complex coefficient, in which he obtains an analogue of the Titchmarsh–Weyl theory and classification. The generalization considered exposes interesting features not visible in the special case in Sims paper from 1957. An m -function is constructed (which is either unique or a point on a ‘limit-circle’), and the relationship between its properties and the spectrum of underlying m -accretive differential operators analysed. The paper is a contribution to the study of non–self–adjoint operators; in general, the spectral theory of such operators is rather fragmentary, and further study is being driven by important physical applications, to hydrodynamics, electro–magnetic theory and nuclear physics, for instance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.