Abstract

The analysis of mode-suppression-ratio (MSR) and wavelength tunability of widely tunable semiconductor lasers using grating-assisted codirectional-coupler (GACC) filters is considered. A tradeoff is found between tuning range and spectral purity when using this type of filter as an intracavity mode selector. It is shown that in order to improve the tuning range by a factor of 10 compared to a conventional tunable laser using distributed feedback reflectors (DBRs), one has to tolerate a MSR around 23 dB at 1 mW output optical power/facet for an ideal cavity design. Limitations imposed by the materials are illustrated with design curves based on a vertical-twin-guide structure in both GaAs and InP systems for lasing wavelengths at 0.98 and 1.55 mu m, respectively. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.