Abstract

AbstractIn this note we summarize some of the properties found in [1–3]. We characterize spectral properties of the quantum mechanical hamiltonian of theories with fermionic degrees of freedom beyond semiclassical approximation. We obtain a general class of bosonic polynomial potentials for which the Schröedinger operator has a discrete spectrum. This class includes all the scalar potentials in membrane, 5‐brane, p‐branes, multiple M2 branes, BLG and ABJM theories. We also give a sufficient condition for discreteness of the spectrum for supersymmmetric and non supersymmetric theories with a fermionic contribution. We characterize then the spectral properties of different theories: the BMN matrix model, the supermembrane with central charges and a bound state of N D2 with m D0. We show that, while the first two models have a purely discrete spectrum with finite multiplicity, the latter has a continuous spectrum starting from a constant given in terms of the monopole charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.