Abstract
We will discuss the spectral equivalence of hierarchical matrix approximations for second order elliptic problems. Our theory will show that a modified variant of the hierarchical matrix Cholesky decomposition which preserves test vectors while truncating blocks to lower rank will lead to a spectrally equivalent approximation when using an adapted truncation threshold. Our theory also covers the usual hierarchical Cholesky decomposition which does not preserve test vectors but expects a significantly more restrictive threshold adaption to obtain a spectrally equivalent approximation. Numerical experiments indicate that the adaption of the truncation parameter seems to be necessary for the traditional hierarchical Cholesky preconditioner to obtain mesh-independent convergence while the variant which preserves test vectors works in practice quite well even with a fixed parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.