Abstract

This study aims to investigate the Zariski topology on the prime ideals of a commutative semigroup S, denoted by Spec(S). First, we show that a topological space X is homeomorphic to Spec(S) for some commutative semigroup S if and only if X is an SS-space that can be described purely in topological terms. Next, we show that an adjunction exists between the category of commutative semigroups and that of SS-spaces. We further show that the category of commutative idempotent semigroups is dually equivalent to that of SS-spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.