Abstract

Let G be a graph on n vertices. The k-token graph (or symmetric k-th power) of G, denoted by Fk(G)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F_k(G)$$\\end{document}, has as vertices the nk\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${n\\atopwithdelims ()k}$$\\end{document}k-subsets of vertices from G, and two vertices are adjacent when their symmetric difference is a pair of adjacent vertices in G. In particular, Fk(Kn)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F_k(K_n)$$\\end{document} is the Johnson graph J(n, k), which is a distance-regular graph used in coding theory. In this paper, we present some results concerning the (adjacency and Laplacian) spectrum of Fk(G)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F_k(G)$$\\end{document} in terms of the spectrum of G. For instance, when G is walk-regular, an exact value for the spectral radius ρ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rho $$\\end{document} (or maximum eigenvalue) of Fk(G)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F_k(G)$$\\end{document} is obtained. When G is distance-regular, other eigenvalues of its 2-token graph are derived using the theory of equitable partitions. A generalization of Aldous’ spectral gap conjecture (which is now a theorem) is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call