Abstract

The universal adjacency matrix U of a graph Γ, with adjacency matrix A, is a linear combination of A, the diagonal matrix D of vertex degrees, the identity matrix I, and the all-1 matrix J with real coefficients, that is, , with and . Thus, in particular cases, U may be the adjacency matrix, the Laplacian, the signless Laplacian, and the Seidel matrix. In this paper, we develop a method for determining the universal spectra and bases of all the corresponding eigenspaces of arbitrary lifts of graphs (regular or not). As an example, the method is applied to give an efficient algorithm to determine the characteristic polynomial of the Laplacian matrix of the symmetric squares of odd cycles, together with closed formulas for some of their eigenvalues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.