Abstract

A Gelfand–Dorfman algebra (GD-algebra) is said to be special if it can be embedded into a differential Poisson algebra. In this paper, we prove that the class of all special GD-algebras is closed with respect to homomorphisms and thus forms a variety. We describe a technique for finding potentially all special identities of GD-algebras and derive two known special identities of degree 4 in this way. By computing the Gröbner basis for the corresponding shuffle operad, we show that these two identities imply all special ones up to degree 5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.