Abstract

We look into the 2851 12CO molecular clouds harboring 13CO structures to reveal the distribution of the projected angular separations and radial velocity separations between their internal 13CO structures. The projected angular separations are determined using the minimal spanning tree algorithm. We find that ∼50% of the angular separations fall in a narrow range of ∼3′–7′ with a median of ∼5′, and the corresponding radial velocity separations mainly range from ∼0.3 to 2.5 km s−1. The mean and standard deviation of the angular separations of the internal 13CO structures within 12CO clouds appear to be universal, independent of the 12CO cloud angular areas and the counts of their internal 13CO structures. We also reveal a scaling relation between the 12CO cloud angular area and its harbored 13CO structure count. These results suggest there is a preferred angular separation between 13CO structures in these 12CO clouds, considering the distance effects. According to that, we propose an alternative picture for the assembly and destruction of molecular clouds: there is a fundamental separation for the internal structures of molecular clouds, the build-up and destruction of molecular clouds proceeds under this fundamental unit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call