Abstract

Abstract. The variability of the hydroclimate over mainland Southeast Asia is strongly influenced by the El Niño–Southern Oscillation (ENSO), which has been linked to severe droughts and floods that profoundly influence human societies and ecosystems alike. Although the significance of ENSO is well understood, there are still limitations in the understanding of its effects on hydroclimate, particularly with regard to understanding the spatio-temporal characteristics and the long-term variation of its effects. Therefore we analysed the seasonal evolution and spatial variations in the effect of ENSO on precipitation over the period of 1980–2013 and the long-term variation in the ENSO teleconnection using tree-ring-derived Palmer drought severity indices (PDSIs) for the March–May season that span over the time period 1650–2004. The analyses provided an improved understanding of the seasonal evolution of the precipitation anomalies during ENSO events. The effects of ENSO were found to be most consistent and expressed over the largest areal extents during March–May of the year when the ENSO events decay. On a longer timescale, we found that ENSO has affected the region's March–May hydroclimate over the majority (95 %) of the 355-year study period and that during half (52 %) of the time ENSO caused a significant increase in hydroclimatic variability. The majority of the extremely wet and dry March–May seasons also occurred during ENSO events. However, considerable variability in ENSO's influence was revealed: the spatial pattern of precipitation anomalies varied between individual ENSO events, and the strength of ENSO's influence was found to vary through time. Given the high variability in ENSO teleconnection that we described and the limitations of the current understanding of the effects of ENSO, we suggest that the adaptation to ENSO-related extremes in hydroclimate over mainland Southeast Asia needs to recognise uncertainty as an inherent part of adaptation, must go beyond "predict and control", and should seek adaptation opportunities widely within society.

Highlights

  • Extremes or changes in the mean state of climate can result in great duress to societies, especially during periods of prolonged drought or flood

  • In this paper we focus on a research need consisting of combined analysis of three aspects: (1) highspatial-resolution understanding of the seasonal evolution of correlation patterns between El Niño–Southern Oscillation (ENSO) and precipitation, covering MSEA and its largest river basins; (2) spatial variation in precipitation anomaly patterns between individual ENSO events over MSEA; and (3) long-term temporal variation and stationarity of the ENSO teleconnection over MSEA

  • This research sought to improve our understanding of the hydroclimate variability by investigating the spatial and temporal variability of MSEA’s ENSO over the period of 1650–2013

Read more

Summary

Introduction

Extremes or changes in the mean state of climate can result in great duress to societies, especially during periods of prolonged drought or flood. Over mainland Southeast Asia, MSEA, ENSO explains a large part of the inter-annual hydrological variability (Juneng and Tangang, 2005), and many of the recent severe droughts and floods occurred during ENSO events Changes in hydroclimate variability is of great concern to the largely agrarian population of MSEA, as their livelihoods, economy, and food security are strongly dependent upon hydroclimatic conditions (MRC, 2010; Keskinen et al, 2010; ADB, 2016; Pech and Sunada, 2008).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call