Abstract

An asymmetric norm is a positive sublinear functional p on a real vector space X satisfying \(x=\theta _X\) whenever \(p(x)=p(-x)=0\). Since the space of all lower semi-continuous linear functionals of an asymmetric normed space is not a linear space, the theory is different in the asymmetric case. The main purpose of this study is to define bounded and continuous linear operators acting between asymmetric cone normed spaces. After examining the differences with symmetric case, we give some results related to Baire’s characterization of completeness in asymmetric cone normed spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.