Abstract
Abstract Annual spring and summer runoff from western Colorado is relied upon by 40 million people, six states, and two countries. Cool season precipitation and snowpack have historically been robust predictors of seasonal runoff in western Colorado. Forecasts made with this information allow water managers to plan for the season ahead. Antecedent hydrological conditions, such as root zone soil moisture and groundwater storage, and weather conditions following peak snowpack also impact seasonal runoff. The roles of such factors were scrutinized in 2020 and 2021: seasonal runoff was much lower than expectations based on snowpack values alone. We investigate the relative importance of meteorological and hydrological conditions occurring before and after the snowpack season in predicting seasonal runoff in western Colorado. This question is critical because the most effective investment strategy for improving forecasts depends on if errors arise before or after the snowpack season. This study is conducted using observations from the Snow Telemetry Network, root zone soil moisture and groundwater data from the Western Land Data Assimilation Systems, and a random forest–based statistical forecasting framework. We find that on average, antecedent root zone soil moisture and groundwater storage values do not add significant skill to seasonal water supply forecasts in western Colorado. In contrast, using precipitation and temperature data after the time of peak snowpack improves water supply forecasts significantly. The 2020 and 2021 runoffs were hampered by dry conditions both before and after the snowpack season. Both antecedent soil moisture and spring/summer precipitation data improved water supply forecast accuracy in these years. Significance Statement Seasonal water supply forecasts in western Colorado are highly valuable because spring and summer runoff from this region helps support the water supply of 40 million people. Accurate forecasts improve the management of the region’s water. Heavy investments have been made in improving our ability to monitor antecedent hydrological conditions in western Colorado, such as root zone soil moisture and groundwater. However, results from this study indicate that the largest source of uncertainty in western Colorado runoff forecasts is future weather. Therefore, improved subseasonal-to-seasonal weather forecasts for western Colorado are what is most needed to improve regional water supply forecasts, and the ability to properly manage western Colorado water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.