Abstract

The solvation properties of the Zn(2+) ion in methanol solution have been investigated using a combined approach based on molecular dynamics (MD) simulations and extended X-ray absorption fine structure (EXAFS) experimental results. The quantum mechanical potential energy surface for the interaction of the Zn(2+) ion with a methanol molecule has been calculated taking into account the effect of bulk solvent by the polarizable continuum model (PCM). The effective Zn-methanol interactions have been fitted by suitable analytical potentials, and have been utilized in the MD simulation to obtain the structural properties of the solution. The reliability of the whole procedure has been assessed by comparing the theoretical structural results with the EXAFS experimental data. The structural parameters of the first solvation shells issuing from the MD simulations provide an effective complement to the EXAFS experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call