Abstract

The solvation force of the water-like fluid models with square-well attraction and site–site chemical association confined to slit-like pores has been explored. Theoretical procedure is based on the application of the density functional approach with mean-field approximation for the attractive interparticle interactions. The chemical association effects are treated by using the first-order thermodynamic perturbation theory of Wertheim. Trends of behaviour of the solvation force are put in correspondence with the distribution of molecules in the pores and with the average density of the adsorbate. Moreover, the distribution of non-bonded species on pore width is described. The influence of the width of the square-well and of the gas–solid attraction is discussed. A comparison of theoretical predictions with computer simulations results for water models in slit-like pores is performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call