Abstract
For a one-dimensional wave equation with a weak nonlinearity, we study the Darboux boundary value problem in angular domains, for which we analyze the existence and uniqueness of a global solution and the existence of local solutions as well as the absence of global solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.