Abstract
In this note, we study the rational covariance extension problem with degree bound when the chosen pseudopolynomial of degree at most n has zeros on the boundary of the unit circle and derive some new theoretical results for this special case. In particular, a necessary and sufficient condition for a solution to be bounded (i.e., has no poles on the unit circle) is established. Our approach is based on convex optimization, similar in spirit to the recent development of a theory of generalized interpolation with a complexity constraint. However, the two treatments do not proceed in the same way and there are important differences between them which we discuss herein. An implication of our results is that bounded solutions can be computed via methods that have been developed for pseudopolynomials which are free of zeros on the boundary, extending the utility of those methods. Numerical examples are provided for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.