Abstract

A quantity concerning the solutions of a quadratic Diophantine equation in $n$ variables coincides with a mass of a special orthogonal group of a quadratic form in dimension $n-1$, via the mass formula due to Shimura. We show an explicit formula for the quantity, assuming the maximality of a lattice in the $(n-1)$-dimensional quadratic space. The quantity is determined by the computation of a group index and of the mass of the genus of maximal lattices in that quadratic space. As applications of the result, we give the number of primitive solutions for the sum of $n$ squares with 6 or 8 and also the quantity in question for the sum of 10 squares.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.