Abstract

AbstractDesigning numerical methods with high-order accuracy for problems in irregular domains and/or with interfaces is crucial for the accurate solution of many problems with physical and biological applications. The major challenge here is to design an efficient and accurate numerical method that can capture certain properties of analytical solutions in different domains/subdomains while handling arbitrary geometries and complex structures of the domains. Moreover, in general, any standard method (finite-difference, finite-element, etc.) will fail to produce accurate solutions to interface problems due to discontinuities in the model’s parameters/solutions. In this work, we consider Difference Potentials Method (DPM) as an efficient and accurate solver for the variable coefficient elliptic interface problems.KeywordsPotential Difference Method (DPM)Elliptic Interface ProblemsAuxiliary DomainLinear Elliptic Second-order Differential OperatorDiscrete Right-hand SideThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.