Abstract
This article discusses an approach to solving large-scale algebraic Riccati equations (AREs) by computing a low-dimensional stable invariant subspace of the associated Hamiltonian matrix. We give conditions on AREs to admit solutions of low numerical rank and show that these can be approximated via Hamiltonian eigenspaces. We discuss strategies on choosing the proper eigenspace that yields a good approximation, and different formulas for building the approximation itself. Similarities of our approach with several other methods for solving AREs are shown: closely related are the projection-type methods that use various Krylov subspaces and the qADI algorithm. The aim of this paper is merely to analyze the possibilities of computing approximate Riccati solutions from low-dimensional subspaces related to the corresponding Hamiltonian matrix and to explain commonalities among existing methods rather than providing a new algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Linear Algebra and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.