Abstract
This paper considers the pre and post buckling behavior of general structures exposed to high temperature fields for long durations wherein creep effects become significant. The solution to this problem is made possible through the use of closed upper bounding constraint surfaces which enable the development of a new time stepping algorithm. This permits the stable and efficient solution of structural problems which exhibit indefinite tangent properties. Due to the manner of constraining/bounding successive iterates, the algorithm developed herein is largely self adaptive, inherently stable, sufficiently flexible to handle geometric material and boundary induced nonlinearity, and can be incorporated into either finite element or difference simulations. To illustrate the capability of the procedure, as well as, the physics of creep induced pre and post buckling behavior, the results of several numerical experiments are included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.