Abstract

Stress analysis of an elliptical inhomogeneity in an infinite isotropic elastic plane is a classical elasticity problem, which is usually solved by means of the complex variable formulation. In this work, we demonstrate that an alternative method of solution for such a problem, via the equivalent inclusion method, may be more convenient and straightforward without recourse to complex potentials or curvilinear coordinates. The explicit analytical solution can be derived through simple algebraic manipulation, although the longitudinal eigenstrain component should be handled with care in the case of plane strain. Since the ex- terior Eshelby tensor for an elliptical inclusion is available in closed-form, the present study provides a full field stress solution expressed in Cartesian coordinates. Furthermore, the in-plane stress components are represented in terms of Dundurs' parameters. The solution methodology and the convenient formulae of the stress concentration may be of practical use to the engineers in developing benchmarks for design evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call