Abstract

We studied the solute-induced perturbation of the solvent environment around a solute species from a microscopic viewpoint and propose a novel approach to the understanding of the structure-making/breaking process, regardless of the type and nature of the solute-solvent interactions. Based on the Kirkwood-Buff fluctuation formalism, we present a rigorous statistical mechanics description of the evolution of the solvent structure around the solute, analyze its response to small perturbations of the ( TP) state conditions and composition of the system, and make direct connections between a few equivalent micro- and macroscopic manifestations as probes for, and targets of, experimental measurements. We illustrate the analysis with theoretical results from integral equation calculations of model fluids and experimental evidence from available data for a variety of aqueous electrolyte and nonelectrolyte real fluid solutions. Finally, we provide a critical discussion about the inadequacy underlying a widely used de facto criterion for the classification of structure-making/breaking solutes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.