Abstract

Directional solidification and quench-out thermal analysis experiments have been performed in Mg-treated cast iron alloys. The volume fraction of liquid, austenite and graphite was evaluated. It was observed that the volume fraction of austenite is much larger than expected from the equilibrium phase diagram at the beginning of the solidification process. It was also been observed that the last melt solidifies far below the equilibrium eutectic temperature. The solidification process was analyzed by non-equilibrium thermodynamic models. The theoretical treatment was supported by the observation that the latent heat decreases during the solidification process. The formation of small pores was observed at the very end of the solidification. An explanation for the formation of the small pores is given in terms of a vacancies creep model. The formation of macropores was related to the large fraction of austenite formed during the first part of the solidification process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.