Abstract

In the present study, a Co1.5CrFeNi1.5Ti0.5 high-entropy alloy has been investigated for its high-temperature microstructural stability. This material is shown to possess mainly a face-centered cubic (FCC) structure; the η phase is present at the interdendritic region in the as-cast condition, and it is stable between 1073 K and 1273 K (800 °C and 1000 °C); γ′ particles are found throughout the microstructures below 1073 K (800 °C). Segregation analysis has been conducted on a single crystal sample fabricated by a directional solidification process with a single crystal seed. Results show that Co, Cr, and Fe partition toward the dendritic region, while Ni and Ti partition toward the interdendritic areas. Scheil analysis indicates that the solid–liquid partitioning ratio of each element is very similar to those in typical single crystal superalloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.