Abstract

This study proposes a two-dimensional coupled approach to examine dynamic response of a sloping beach due to tsunami-like solitary wave. Wave motion is governed by Reynolds-averaged Navier–Stokes (RANS) equations, while the beach response is described with the poro-elastoplastic theory. The wave module and beach module are strongly integrated, resulting in a profound investigation of the solitary wave-induced soil response. Validation against the experimental demonstrates the applicability of the present approach. Results show that the excess pore water pressure ratio (EPWPR) is significant in the shallow soil. Distribution of EPWPR along the soil depth direction shows a decreasing trend. In addition, the principal axes of soil element on the shoreline rotated considerably under the solitary wave loading. When wave draws down from the slope, both shear stress and mean effective stress decrease compared with the run-up process. For engineering practice, special attention is given to the effect of permeability and coast slope on the soil response subjected to tsunami-like solitary waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call