Abstract

We discuss a semiclassical model of transfer reactions in heavy-ion collisions, in which the nuclei are assumed to move along classical trajectories governed by the Coulomb and the real part of the optical potential. The model, originally proposed for the case of spherical nuclei, is here extended to deformed ones. It takes into account tunneling around the point of closest approach of the collision partners, and the effect of other channels is included as an absorption due to the imaginary part of the optical potential. The interplay between absorption and tunneling effects explains both the observed energy dependence of the transfer probabilities at large distances, and the so-called “slope anomaly” in neutron transfer reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call