Abstract
Given a smooth curve of genus g ≥ 1 which admits a smooth projective embedding of dimension m over the ground field $$ \mathbb{F}_q $$ of q elements, we obtain the asymptotic formula q g+o(g) for the size of set of the $$ \mathbb{F}_q $$ -rational points on its Jacobian in the case when m and q are bounded and g → ∞. We also obtain a similar result for curves of bounded gonality. For example, this applies to the Jacobian of a hyperelliptic curve of genus g → ∞.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Brazilian Mathematical Society, New Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.