Abstract

Let D be a central division algebra of degree n over a field K. One defines the genus gen(D) of D as the set of classes [D'] in the Brauer group Br(K) of K represented by central division algebras D' of degree n over K having the same maximal subfields as D. We prove that if the field K is finitely generated and n is prime to its characteristic, then gen(D) is finite, and give explicit estimations of its size in certain situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.