Abstract

Using a thermodynamic approach, a disperse system formed by an ensemble of particles with various shapes and volumes is studied. The shape of a particle is set by the value of its fractal dimension, which characterizes the relationship between the volume and surface area. Using the methods of number theory and the Hardy–Ramanujan–Rademacher formula, the size distribution functions of the dispersed phase of particles with various shapes in the ensemble corresponding to the state of thermodynamic equilibrium are constructed. Based on the distribution functions, estimates of the mean size and fractal dimension of dispersed particles are obtained. The relationships between the average geometric characteristics of particles in the ensemble, the thermodynamic conditions in which the disperse system is located, and the properties of the substance forming it are established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.