Abstract

AbstractThe problem of size dependence of surface tension was investigated in view of a more general problem of the applicability of Gibbs’ thermodynamics to nanosized objects. For the first time, the effective surface tension (coinciding with the specific excess free energy for an equimolecular dividing surface) was calculated within a wide temperature range, from the melting temperature to the critical point, using the thermodynamic perturbation theory. Calculations were carried out for Lennard-Jones and metallic nanosized droplets. It was found that the effective surface tension decreases both, with temperature and particle size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call