Abstract

In triplet-triplet annihilation based photon upconversion, controlling triplet energy transfer (TET) through the system is key to unlocking higher efficiencies. In this work, we vary the size of colloidally synthesized CdSe nanocrystals (NCs) to examine the effects on TET during photon upconversion, using steady-state measurements and transient absorption spectroscopy. As the CdSe NC size increases, the photon upconversion quantum yield (QY) decreases due to the decrease in the rate of TET from CdSe to the surface bound anthracene transmitter ligand, as expected for the Marcus description of energy transfer from the transmitter to the NC. Long microsecond transmitter lifetimes are critical to high photon upconversion QYs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call