Abstract

We investigate the singular Weyl–Titchmarsh m-function of perturbed spherical Schrödinger operators (also known as Bessel operators) under the assumption that the perturbation q ( x ) satisfies x q ( x ) ∈ L 1 ( 0 , 1 ) . We show existence plus detailed properties of a fundamental system of solutions which are entire with respect to the energy parameter. Based on this we show that the singular m-function belongs to the generalized Nevanlinna class and connect our results with the theory of super singular perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.